
Natural Language Understanding

Lecture 7: Introduction to Dependency Parsing

Adam Lopez

Credits: Mirella Lapata, Frank Keller, and Mark Steedman

26 January 2018

School of Informatics

University of Edinburgh

alopez@inf.ed.ac.uk

1

alopez@inf.ed.ac.uk

Dependency Grammar

Syntax is often described in terms of constituency

Dependency syntax is closer to semantics

Dependency syntax is still (usually) tree-like

Dependency Parsing

Constituent vs. Dependency Parsing

Graph-based Dependency Parsing

Transition-based Dependency Parsing

Reading: Kiperwasser and Goldberg (2016).

Background: Jurafsky and Martin, Ch. 12.7. (14 in the new edition)

2

Dependency Grammar

Constituents vs. Dependencies

Traditional grammars model constituent structure: they capture

the configurational patterns of sentences.

For example, verb phrases (VPs) have certain properties in English:

(1) a. I like ice cream. Do you ∅? (VP ellipsis)

b. I like ice cream and hate bananas. (VP conjunction)

c. I said I would hit Fred, and hit Fred I did. (VP

fronting)

In other languages (e.g., German), there is little evidence for the

existence of a VP constituent.

3

Constituents form recursive tree structures

S

��
�
��

�
��

�
��
�

HH
H

HH
H

HH
H

HH
H

NP

�
��

H
HH

JJ

Economic

NN

news

VP

��
�
��

HH
H

HH

VBD

had

NP

��
��

�
��

HH
HH

H
HH

JJ

little

NN

effect

PP

��
��

HH
HH

IN

on

NP

�
��

H
HH

JJ

financial

NN

markets

PU

“.”

4

Constituents leave out much semantic information

But from a semantic point of view, the important thing about

verbs such as like is that they license two NPs:

1. an agent, found in subject position or with nominative

inflection;

2. a patient, found in object position or with accusative

inflection.

Which arguments are licensed, and which roles they play, depends

on the verb (configuration is secondary).

To account for semantic patterns, we focus dependency.

Dependencies can be identified even in non-configurational

languages.

5

Dependency Structure

A dependency structure consists of dependency relations, which are

binary and asymmetric . A relation consists of:

• a head (H);

• a dependent (D);

• a label identifying the relation between H and D.

nmod nmodnmod

obj

nmod

pmod

p
ROOT

subj

JJ NN VBD JJ NN IN JJ NNS PU

Economic news had little effect on financial markets .

[From Joakim Nivre, Dependency Grammar and Dependency Parsing.]

6

Dependency Trees

Formally, the dependency structure of a sentence is a graph with

the words of the sentence as its nodes, linked by directed, labeled

edges, with the following properties:

• connected: every node is related to at least one other node,

and (through transitivity) to ROOT;

• single headed: every node (except ROOT) has exactly one

incoming edge (from its head);

• acyclic: the graph cannot contain cycles of directed edges.

These conditions ensure that the dependency structure is a tree.

7

Dependency trees can be projective

We distinguish projective and non-projective dependency trees:

A dependency tree is projective wrt. a particular linear order of its

nodes if, for all edges h→ d and nodes w , w occurs between h

and d in linear order only if w is dominated by h.

I heard Cecilia teach the horses to sing

nsubj

ccomp
nsubj

ccomp

det
nsubj

mark

8

Projective trees can be described with context-free grammars

I heard Cecilia teach the horses to sing

nsubj

ccomp
nsubj

ccomp

det
nsubj

mark

S → Nsubj heard Ccomp

Ccomp → Nsubj teach Ccomp

Nsubj → I

Nsubj → Cecilia

Ccomp → Nsubj Mark sing

Mark → to

Nsubj → Det horses

Det → the

9

Dependency Trees can be non-projective

A dependency tree is non-projective if w can occur between h and

d in linear order without being dominated by h.

... dat ik Cecilia de paarden hoord leren zingen

... that I Cecilia the horses heard teach sing

A non-projective dependency grammar is not context-free. It’s still

possible to write non-projective grammars in linear context-free

rewriting systems. (These are very interesting! But well beyond the

scope of the course.)

10

Dependency Parsing

Dependency parsing is different from constituent parsing

In ANLP and FNLP, we’ve already seen various parsing algorithms

for context-free languages (shift-reduce, CKY, active chart).

Why consider dependency parsing as a distinct topic?

• context-free parsing algorithms base their decisions on

adjacency;

• in a dependency structure, a dependent need not be adjacent

to its head (even if the structure is projective);

• we need new parsing algorithms to deal with non-adjacency

(and with non-projectivity if present).

11

There are many ways to parse dependencies

We will consider two types of dependency parsers:

1. graph-based dependency parsing, based on maximum

spanning trees (MST parser, ?);

2. transition-based dependency parsing, an extension of

shift-reduce parsing (MALT parser, ?).

Alternative 3: map dependency trees to phrase structure trees and

do standard CFG parsing (for projective trees) or LCFRS variants

(for non-projective trees). We will not cover this here.

Note that each of these approach arises from different views of

syntactic structure: as a set of constraints (MST), as the actions

of an automaton (transition-based), or as the derivations of a

grammar (CFG parsing). It is often possible to translate between

these views, with some effort. 12

Graph-based dependency parsing as tagging

Goal: find the highest scoring dependency tree in the space of all

possible trees for a sentence.

Let x = x1 · · · xn be the input sentence, and y a dependency tree

for x. Here, y is a set of dependency edges, with (i , j) ∈ y if there

is an edge from xi to xj .

Intuition: since each word has exactly one parent, this is like a

tagging problem, where the possible tags are the other words in the

sentence (or a dummy node called root). If we edge factorize the

score of a tree so that it is simply the product of its edge scores,

then we can simply select the best incoming edge for each word...

subject to the constraint that the result must be a tree.

13

Formalizing graph-based dependency parsing

The score of a dependency edge (i , j) is a function s(i , j). We’ll

discuss the form of this function a little bit later.

Then the score of dependency tree y for sentence x is:

s(x, y) =
∑

(i ,j)∈y

s(i , j)

Dependency parsing is the task of finding the tree y with highest

score for a given sentence x.

14

The best dependency parse is the maximum spanning tree

This task can be achieved using the following approach (?):

• start with a totally connected graph G , i.e., assume a directed

edge between every pair of words;

• assume you have a scoring function that assigns a score s(i , j)

to every edge (i , j);

• find the maximum spanning tree (MST) of G , i.e., the

directed tree with the highest overall score that includes all

nodes of G ;

• this is possible in O(n2) time using the Chu-Liu-Edmonds

algorithm; it finds a MST which is not guaranteed to be

projective;

• the highest-scoring parse is the MST of G .

15

Chu-Liu-Edmonds (CLE) Algorithm

Example: x = John saw Mary, with graph Gx. Start with the fully

connected graph, with scores:with directed graph representation ,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
16

Chu-Liu-Edmonds (CLE) Algorithm

Each node j in the graph greedily selects the incoming edge with

the highest score s(i , j):word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we
If a tree results, it is the maximum spanning tree. If not, there

must be a cycle.

Intuition: We can break the cycle if we replace a single incoming

edge to one of the nodes in the cycle. Which one? Decide

recursively.

17

CLE Algorithm: Recursion

Identify the cycle and contract it into a single node and recalculate

scores of incoming and outgoing edges.

Intuition: edges into the cycle are the weight of the cycle with only

the dependency of the target word changed.and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

9

30

31

wjs

The new vertex w represents the contraction of

vertices John and saw. The edge from to
Now call CLE recursively on this contracted graph. MST on the

contracted graph is equivalent to MST on the original graph. 18

CLE Algorithm: Recursion

Again, greedily collect incoming edges to all nodes:

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. WeThis is a tree, hence it must be the MST of the graph.

19

CLE Algorithm: Reconstruction

Now reconstruct the uncontracted graph: the edge from wjs to

Mary was from saw. The edge from ROOT to wjs was a tree from

ROOT to saw to John, so we include these edges too:final (and correct) MST,
root

saw

John Mary

10

3030

A possible concern with searching the entire space

20

Where do we get edge scores s(i , j) from?

s(x, y) =
∑

(i ,j)∈y

s(i , j)

For the decade after 2005: linear model trained with clever variants

of SVMs, MIRA, etc.

More recently: neural networks, of course.

21

Where do we get edge scores s(i , j) from?

s(x, y) =
∑

(i ,j)∈y

s(i , j)

For the decade after 2005: linear model trained with clever variants

of SVMs, MIRA, etc.

More recently: neural networks, of course.

21

Where do we get edge scores s(i , j) from?

s(x, y) =
∑

(i ,j)∈y

s(i , j)

For the decade after 2005: linear model trained with clever variants

of SVMs, MIRA, etc.

More recently: neural networks, of course.

21

Scoring edges with a neural network

There are a few different formulations of this. An effective one

from Zhang and Lapata (2016):

s(i , j) = Phead(wj |wi , x) =
exp(g(aj , ai))∑|x|

k=0 exp(g(ak , ai))

We get ai by concatenating the hidden states of a forward and

backward RNN at position i .

The function g(aj , ai) computes an association score telling us

how much word wi prefers word wj as its head. A simple option

from among many:

g(aj , ai) = v>a · tanh(Ua · aj + Wa · ai)

Association scores are a useful way to select from a dynamic group

of candidates, and underly the idea of attention used in MT. 22

Transition-based Dependency Parsing

An MST parser builds a dependency tree though graph surgery. An

alternative is transition-based parsing:

• for a given parse state, the transition system defines a set of

actions T which the parser can take;

• if more than one action is applicable, a classifier (e.g., an

SVM) is used to decide which action to take;

• just like in the MST model, this requires a mechanism to

compute scores over a set of (possibly dynamic) candidates.

23

Transition-based Dependency Parsing

The arc-standard transition system:

• configuration c = (s, b,A) with stack s, buffer b, set of

dependency arcs A;

• initial configuration for sentence w1, . . . ,wn is

s = [ROOT], b = [w1, . . . ,wn],A = ∅;
• c is terminal if buffer is empty, stack contains only ROOT, and

parse tree is given by Ac ;

• if si is the ith top element on stack, and bi the ith element on

buffer, then we have the following transitions:

• LEFT-ARC(l): adds arc s1 → s2 with label l and removes s2

from stack; precondition: |s| ≥ 2;

• RIGHT-ARC(l): adds arc s2 → s1 with label l and removes s1

from stack; precondition: |s| ≥ 2;

• SHIFT: moves b1 from buffer to stack; recondition: |b| ≥ 1. 24

Transition-based Dependency Parsing

ROOT He has good control .

PRP VBZ JJ NN .

root

nsubj

punct

dobj

amod

Transition Stack Buffer A

[ROOT] [He has good control .] ∅

SHIFT [ROOT He] [has good control .]
SHIFT [ROOT He has] [good control .]
LEFT-ARC(nsubj) [ROOT has] [good control .] A∪ nsubj(has,He)
SHIFT [ROOT has good] [control .]
SHIFT [ROOT has good control] [.]
LEFT-ARC(amod) [ROOT has control] [.] A∪amod(control,good)
RIGHT-ARC(dobj) [ROOT has] [.] A∪ dobj(has,control)
.
RIGHT-ARC(root) [ROOT] [] A∪ root(ROOT,has)

25

Summary

Comparing MST and transition-based parsers:

• the MST parser selects the globally optimal tree, given a set

of edges with scores;

• it can naturally handle projective and non-projective trees;

• a transition-based parser makes a sequence of local decisions

about the best parse action;

• it can be extended to projective dependency trees by changing

the transition set;

• accuracies are similar, but transition-based is faster;

• both require dynamic classifiers, and these can be

implemented using neural networks, conditioned on

bidirectional RNN encodings of the sentence.

26

	Dependency Grammar
	Syntax is often described in terms of constituency
	Dependency syntax is closer to semantics
	Dependency syntax is still (usually) tree-like

	Dependency Parsing
	Constituent vs. Dependency Parsing
	Graph-based Dependency Parsing
	Transition-based Dependency Parsing

